Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress.

Identifieur interne : 003071 ( Main/Exploration ); précédent : 003070; suivant : 003072

The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress.

Auteurs : Ren-Jie Tang [République populaire de Chine] ; Hua Liu ; Yan Bao ; Qun-Dan Lv ; Lei Yang ; Hong-Xia Zhang

Source :

RBID : pubmed:20803312

Descripteurs français

English descriptors

Abstract

In Arabidopsis thaliana, the salt overly sensitive (SOS) pathway plays an essential role in maintaining ion homeostasis and conferring salt tolerance. Here we identified three SOS components in the woody plant Populus trichocarpa, designated as PtSOS1, PtSOS2 and PtSOS3. These putative SOS genes exhibited an overlapping but distinct expression pattern in poplar plants and the transcript levels of SOS1 and SOS2 were responsive to salinity stress. In poplar mesophyll protoplasts, PtSOS1 was specifically localized in the plasma membrane, whereas PtSOS2 was distributed throughout the cell, and PtSOS3 was predominantly targeted to the plasma membrane. Heterologous expression of PtSOS1, PtSOS2 and PtSOS3 could rescue salt-sensitive phenotypes of the corresponding Arabidopsis sos mutants, demonstrating that the Populus SOS proteins are functional homologues of their Arabidopsis counterpart. In addition, PtSOS3 interacted with, and recruited PtSOS2 to the plasma membrane in yeast and in planta. Reconstitution of poplar SOS pathway in yeast cells revealed that PtSOS2 and PtSOS3 acted coordinately to activate PtSOS1. Moreover, expression of the constitutively activated form of PtSOS2 partially complemented the sos3 mutant but not sos1, suggesting that PtSOS2 functions genetically downstream of SOS3 and upstream of SOS1. These results indicate a strong functional conservation of SOS pathway responsible for salt stress signaling from herbaceous to woody plants.

DOI: 10.1007/s11103-010-9680-x
PubMed: 20803312


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress.</title>
<author>
<name sortKey="Tang, Ren Jie" sort="Tang, Ren Jie" uniqKey="Tang R" first="Ren-Jie" last="Tang">Ren-Jie Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hua" sort="Liu, Hua" uniqKey="Liu H" first="Hua" last="Liu">Hua Liu</name>
</author>
<author>
<name sortKey="Bao, Yan" sort="Bao, Yan" uniqKey="Bao Y" first="Yan" last="Bao">Yan Bao</name>
</author>
<author>
<name sortKey="Lv, Qun Dan" sort="Lv, Qun Dan" uniqKey="Lv Q" first="Qun-Dan" last="Lv">Qun-Dan Lv</name>
</author>
<author>
<name sortKey="Yang, Lei" sort="Yang, Lei" uniqKey="Yang L" first="Lei" last="Yang">Lei Yang</name>
</author>
<author>
<name sortKey="Zhang, Hong Xia" sort="Zhang, Hong Xia" uniqKey="Zhang H" first="Hong-Xia" last="Zhang">Hong-Xia Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20803312</idno>
<idno type="pmid">20803312</idno>
<idno type="doi">10.1007/s11103-010-9680-x</idno>
<idno type="wicri:Area/Main/Corpus">003082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003082</idno>
<idno type="wicri:Area/Main/Curation">003082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003082</idno>
<idno type="wicri:Area/Main/Exploration">003082</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress.</title>
<author>
<name sortKey="Tang, Ren Jie" sort="Tang, Ren Jie" uniqKey="Tang R" first="Ren-Jie" last="Tang">Ren-Jie Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hua" sort="Liu, Hua" uniqKey="Liu H" first="Hua" last="Liu">Hua Liu</name>
</author>
<author>
<name sortKey="Bao, Yan" sort="Bao, Yan" uniqKey="Bao Y" first="Yan" last="Bao">Yan Bao</name>
</author>
<author>
<name sortKey="Lv, Qun Dan" sort="Lv, Qun Dan" uniqKey="Lv Q" first="Qun-Dan" last="Lv">Qun-Dan Lv</name>
</author>
<author>
<name sortKey="Yang, Lei" sort="Yang, Lei" uniqKey="Yang L" first="Lei" last="Yang">Lei Yang</name>
</author>
<author>
<name sortKey="Zhang, Hong Xia" sort="Zhang, Hong Xia" uniqKey="Zhang H" first="Hong-Xia" last="Zhang">Hong-Xia Zhang</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Plant Proteins (analysis)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Proteins (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Salt Tolerance (genetics)</term>
<term>Sodium Chloride (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Two-Hybrid System Techniques (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Chlorure de sodium (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (analyse)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines végétales (physiologie)</term>
<term>Stress physiologique (MeSH)</term>
<term>Techniques de double hybride (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Tolérance au sel (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Salt Tolerance</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Tolérance au sel</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Populus</term>
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorure de sodium</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Plant Proteins</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Complementation Test</term>
<term>Stress, Physiological</term>
<term>Two-Hybrid System Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Stress physiologique</term>
<term>Techniques de double hybride</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Arabidopsis thaliana, the salt overly sensitive (SOS) pathway plays an essential role in maintaining ion homeostasis and conferring salt tolerance. Here we identified three SOS components in the woody plant Populus trichocarpa, designated as PtSOS1, PtSOS2 and PtSOS3. These putative SOS genes exhibited an overlapping but distinct expression pattern in poplar plants and the transcript levels of SOS1 and SOS2 were responsive to salinity stress. In poplar mesophyll protoplasts, PtSOS1 was specifically localized in the plasma membrane, whereas PtSOS2 was distributed throughout the cell, and PtSOS3 was predominantly targeted to the plasma membrane. Heterologous expression of PtSOS1, PtSOS2 and PtSOS3 could rescue salt-sensitive phenotypes of the corresponding Arabidopsis sos mutants, demonstrating that the Populus SOS proteins are functional homologues of their Arabidopsis counterpart. In addition, PtSOS3 interacted with, and recruited PtSOS2 to the plasma membrane in yeast and in planta. Reconstitution of poplar SOS pathway in yeast cells revealed that PtSOS2 and PtSOS3 acted coordinately to activate PtSOS1. Moreover, expression of the constitutively activated form of PtSOS2 partially complemented the sos3 mutant but not sos1, suggesting that PtSOS2 functions genetically downstream of SOS3 and upstream of SOS1. These results indicate a strong functional conservation of SOS pathway responsible for salt stress signaling from herbaceous to woody plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20803312</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>12</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>74</Volume>
<Issue>4-5</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress.</ArticleTitle>
<Pagination>
<MedlinePgn>367-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-010-9680-x</ELocationID>
<Abstract>
<AbstractText>In Arabidopsis thaliana, the salt overly sensitive (SOS) pathway plays an essential role in maintaining ion homeostasis and conferring salt tolerance. Here we identified three SOS components in the woody plant Populus trichocarpa, designated as PtSOS1, PtSOS2 and PtSOS3. These putative SOS genes exhibited an overlapping but distinct expression pattern in poplar plants and the transcript levels of SOS1 and SOS2 were responsive to salinity stress. In poplar mesophyll protoplasts, PtSOS1 was specifically localized in the plasma membrane, whereas PtSOS2 was distributed throughout the cell, and PtSOS3 was predominantly targeted to the plasma membrane. Heterologous expression of PtSOS1, PtSOS2 and PtSOS3 could rescue salt-sensitive phenotypes of the corresponding Arabidopsis sos mutants, demonstrating that the Populus SOS proteins are functional homologues of their Arabidopsis counterpart. In addition, PtSOS3 interacted with, and recruited PtSOS2 to the plasma membrane in yeast and in planta. Reconstitution of poplar SOS pathway in yeast cells revealed that PtSOS2 and PtSOS3 acted coordinately to activate PtSOS1. Moreover, expression of the constitutively activated form of PtSOS2 partially complemented the sos3 mutant but not sos1, suggesting that PtSOS2 functions genetically downstream of SOS3 and upstream of SOS1. These results indicate a strong functional conservation of SOS pathway responsible for salt stress signaling from herbaceous to woody plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Ren-Jie</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bao</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lv</LastName>
<ForeName>Qun-Dan</ForeName>
<Initials>QD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hong-Xia</ForeName>
<Initials>HX</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>08</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020798" MajorTopicYN="N">Two-Hybrid System Techniques</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20803312</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-010-9680-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Jan;21(1):81-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12469134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):735-742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Oct;137(2):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19678897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(7):1565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Feb;61(4):1205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20054031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):1024-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 May;40(3):656-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11359571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):435-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jun;33(6):943-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Feb;6(2):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1466-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):919-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 May 5;264(13):7437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2523395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(3):554-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Jan;29(1):125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2457-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(3):428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Oct;32(2):139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10823923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):210-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 May;58(1):75-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16028118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jun 19;280(5371):1943-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9632394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Jan 16;378(3):483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Oct 8;8(20):1121-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9778531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Apr 14;156(1):119-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7737504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19448033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18816-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17023541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):1001-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jun;13(6):1383-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 20;285(5431):1256-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Dec 8;270(5242):1660-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7502075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Oct;144 ( Pt 10):2749-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9802016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):1041-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Mar 1;20(5):1051-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11230129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2000 Aug;12(4):431-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jun;73(3):251-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Apr;19(4):1415-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Jan;2(1):22-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19529826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2008 Jan;50(1):56-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18666952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Sep;12(9):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11006339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 May 1;473(1):8-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3730-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bao, Yan" sort="Bao, Yan" uniqKey="Bao Y" first="Yan" last="Bao">Yan Bao</name>
<name sortKey="Liu, Hua" sort="Liu, Hua" uniqKey="Liu H" first="Hua" last="Liu">Hua Liu</name>
<name sortKey="Lv, Qun Dan" sort="Lv, Qun Dan" uniqKey="Lv Q" first="Qun-Dan" last="Lv">Qun-Dan Lv</name>
<name sortKey="Yang, Lei" sort="Yang, Lei" uniqKey="Yang L" first="Lei" last="Yang">Lei Yang</name>
<name sortKey="Zhang, Hong Xia" sort="Zhang, Hong Xia" uniqKey="Zhang H" first="Hong-Xia" last="Zhang">Hong-Xia Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tang, Ren Jie" sort="Tang, Ren Jie" uniqKey="Tang R" first="Ren-Jie" last="Tang">Ren-Jie Tang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003071 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003071 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20803312
   |texte=   The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20803312" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020